Restoring a stream — ear plugs required!

 

image002

Just me, some friends, a pair of ear plugs, and a post-driver. Photo by NOAA Fisheries

Hello, my name is Sarah Fields and I am interning at NOAA Fisheries through the WaYS [Wabanaki Youth in Science] program. I’m going into my senior year and this is my third year working with NOAA Fisheries out of the Maine Field Station here in Orono, ME.

Recently I got to help work on a restoration project on the  Narraguagus River, one of the last rivers in the United States that supports wild Atlantic salmon. The site we were at was historically used for transporting logs, to help this process the stream was widened and straightened. This caused the ecosystem of the stream to be thrown off balance, affecting turbidity and the natural flow of the water.

To bring the stream back to its natural condition, structures to correct the water flow are placed within the stream. To do this we took down a white pine that would take about 50 years to naturally fall on its own. Taking down this tree helped create a better habitat for fish and an ecosystem closer to what it should be. Trees and debris had in the past been cleared of this waterway due to the logging transportation taking place, the felling of this tree was essential to returning the stream back to its original conditions.

My day at the Narraguagus River started by helping to excavate roots from the white pine.  We spent the majority of the day finding roots and digging them up so that they could be severed with a chainsaw. After all the major roots were cut through, cables tied to the tree gave the tension it needed to fall.

After this success,  we worked on making a triangular structure out of sticks in the middle of the stream to disperse the direction of the water flow to both sides of the structure.

Wooden posts were also placed around the perimeter of the triangular structure to make it more secure. As  you can see from the photo up top, a post-driver was used to do this along with the help of a large wooden tripod to help handle the weight. After finding some earplugs for myself, I got to try out the post-driver.

I really enjoyed the hands-on experience as my first time helping with a restoration project.  Although I am not certain on what it is I want to do, marine science is definitely an option for my future career.

image004

The finished product — helping water flow using natural debris.  Photo by NOAA Fisheries

A Day in the Life of Darius Sanford

by Dan Teano, SHIP intern

darius-1

Darius Sanford (Class of 2018) is a Marine Science major at Savannah State University located in Savannah, Georgia. After graduating next spring, Sanford plans to pursue a Master’s degree in Environmental Law or Environmental Policy. In his spare time, Darius reads and listens to current events worldwide and also writes science fiction novels.

 darius-net-2

Sanford is a summer intern with the Sandy Hook Internship Program (SHIP) at the Northeast Fisheries Science Center’s (NEFSC) Howard Laboratory in New Jersey. Under the mentorship of NEFSC chemist Ashok Deshpande, Sanford is studying how microplastics end up in marine and estuarine ecosystems, specifically fish stomachs. Microplastics can have serious environmental, economic and health implications, understanding the sources and fates of it is important for cultivating healthy and productive ecosystems. To begin, Sanford must first collect an array of plastics from everyday household items and clothing fabrics, like this yellow plastic mesh.

darius-exacto-3

Next, Sanford needs to create a source library – a series of known plastics that when analyzed carries a uniquely identifiable chemical fingerprint. He uses an instrument called a Pyrolysis Gas Chromatography-Mass Spectrometry (Pyr-GC-MS) to create those chemical fingerprints. So far, Sanford has created 15 different chemical fingerprints for his source library.

darius-stomachs-4

Once the source library is created, Sanford can process fish stomachs for evidence of microscopic pieces of plastic, called microplastics, that he’ll analyze for its chemical fingerprints to compare against his library. Standing a few steps back, Sanford watches as the fish stomach is processed by an ultrasonic probe which sounds like the pulsing of an electric drill boring through metal. The sonicator emulsifies and disintegrates the fish stomach tissue cells into a slurry. When the slurry reaches a Slushee-like consistency, Sanford will pour the slurry over a membrane filter and drain off the liquid. Using a microscope, he then collects items off the filter that at first glance look like small bits of microplastic.

darius-inject-5

Darius then places each bit of microplastic in separate quartz tubes to be analyzed in the GC-MS. Here Sanford analyzes the microplastic sample by heating it to 650 degrees Celsius (1202 degrees Fahrenheit). At this temperature, the solid plastic polymer is pyrolyzed and transformed into a smaller gaseous fragment molecules, revealing its chemical fingerprint.

darius-read-out-6

As the sample runs, Sanford can see in real time the chemical fingerprint of his sample. He shows a fellow intern, Rory Kelly, three characteristic chemical peaks. This he says is a classic signature for polyethylene, a commonly used plastic for wrapping and containing food. With the accumulation of microplastics in estuarine and marine ecosystems an ever increasing scientific and societal concern, Sanford’s intern project helps fill our knowledge gaps surrounding the identification of polymer type and perhaps the source of products that turn into microplastics in the environment.